
Katana 450
Quickstart Guide
Programming with KNI

c© Neuronics AG, 2001-2009. All rights reserved
Document No: 233551

Version 1.0.0

Neuronics AG, Technoparkstrasse 1, CH-8005 Zürich
Tel: +41 44 445 16 40, Fax: +41 44 445 16 44

www.neuronics.ch
info@neuronics.ch

http://info@neuronics.ch
mailto:info@neuronics.ch

Contents

Contents

1 Overview 1

2 Build Environment 2
2.1 KNI Sources . 2

2.1.1 Reference Sources . 2
2.1.2 Installation . 2

2.1.2.1 Linux . 2
2.1.2.2 Windows . 2

2.1.3 Description of the Source Tree . 3
2.1.4 The KNI Software Architecture . 4

2.2 Build Dependencies and Required Tools . 4
2.2.1 Linux und Mac . 4
2.2.2 Windows . 4

2.3 The Katana Configuration Files . 5

3 Programming in C++ 6
3.1 Connection . 6
3.2 Initialisation . 6
3.3 Movements . 7
3.4 Demo Programs . 7

3.4.1 Control . 7
3.4.2 Commands . 8
3.4.3 Csharp . 8
3.4.4 kni wrapper . 8

4 Kinematics 9
4.1 Integrated Kinematics Library . 9
4.2 Roboop Kinematics Library . 9

5 Integration in Other Languages and Frameworks 10
5.1 .NET . 10
5.2 C-based Interfaces . 10
5.3 Python . 10

5.3.1 LabView . 11
5.3.2 Matlab . 11

Quickstart Guide i

1 Overview

The Katana Native Interface KNI is an open source software library for controlling the Katana robot. KNI is
written in C++ and structured so that it can easily be ported to other languages and frameworks. The code is
non-platform-specific and can be compiled under both Windows (with the MS Visual C++ Compiler) and Linux
(with the GNU Compiler Toolchain).

Since the KNI abstracts the underlying layers, applications can be written for the Katana without having to
become involved in the details of the system. It takes just a few function calls to connect and initialise the
robot. The protocol for controlling the robot from the PC is abstracted in its entirety. The KNI features an
implementation of robot kinematics and path calculation routines for the synchronous control of all axes and
the traversing of paths in space with the end effector.

The openness of the common sources also makes the KNI the ideal tool for research and training, since the
entire implementation can be traced, as well as modified and adapted at will.

Quickstart Guide 1

2 Build Environment

2.1 KNI Sources

2.1.1 Reference Sources

Up-to-date sources for the KNI can be downloaded free of charge from the Neuronics website

http://www.neuronics.ch/

(visit the Download area). Existing customers are informed automatically whenever a new version is made
available.

2.1.2 Installation

2.1.2.1 Linux

In a shell, switch to the folder to which the KNI archive was downloaded. Decompress the archive with

tar -jxvf KatanaNativeInterface-x.x.x.tar.bz2

and switch to the KNI folder with

cd KatanaNativeInterface-x.x.x/

Once the dependencies and tools have been installed as described in Chapter 2.2, the libraries and demos
can be compiled with the

make

command.

2.1.2.2 Windows

Run the installer and follow the instructions. The installation folder is

C:\Program Files\Neuronics AG\KatanaNativeInterface\

The installer creates a program group ‘Katana Native Interface’ in the start menu with links to ‘KNI Visual C++
Solution’ and the ‘Demo Applications’ folder.

Once the dependencies and tools have been installed as described in Chapter 2.2, the ’.sln’ file in the installa-
tion folder under ’win32’ can be opened with Visual Studio (double-click will open Visual Studio automatically).

On the left side in Visual Studio the Projects (parts of KNI and demos) are listed. To compile the control
demo, right-click on the ’Demo-Control’ and choose ’Build’. The program is now in the installation folder under
demo\control\control.exe

Quickstart Guide 2

KNI Sources

2.1.3 Description of the Source Tree

Following installation, the KNI looks like a simple source tree:

-rw-r--r-- 1 user user 359 2008-09-05 11:24 AUTHORS.txt
-rw-r--r-- 1 user user 3780 2007-11-21 12:30 changelog.txt
drwxr-xr-x 3 user user 4096 2008-06-25 14:48 configfiles400
drwxr-xr-x 3 user user 4096 2008-07-29 06:08 configfiles450
drwxr-xr-x 8 user user 4096 2008-09-09 08:41 demo
drwxr-xr-x 6 user user 4096 2008-06-06 11:12 doc
-rw-r--r-- 1 user user 9937 2008-06-06 11:10 Doxyfile
drwxr-xr-x 3 user user 4096 2007-07-24 08:48 drivers
drwxr-xr-x 8 user user 4096 2008-09-05 11:32 include
-rw-r--r-- 1 user user 426 2007-05-22 12:11 INSTALL.txt
drwxr-xr-x 3 user user 4096 2007-09-27 10:38 KNI.net
drwxr-xr-x 5 user user 4096 2007-05-22 12:11 lib
-rw-r--r-- 1 user user 15149 2007-05-22 12:11 LICENSE.txt
-rw-r--r-- 1 user user 1420 2008-09-05 11:37 Makefile
drwxr-xr-x 4 user user 4096 2008-09-05 11:28 py
-rw-r--r-- 1 user user 1553 2008-06-06 10:54 readme.txt
drwxr-xr-x 8 user user 4096 2008-09-04 14:51 src

The folders in the root directory contain:

Name Description

configfiles400 Configuration files for the Katana400
configfiles450 Configuration files for the Katana450
demo KNI demo programs and examples
doc KNI Documentation
drivers Drivers for the USB connection to the Katana
include The KNI’s include files
KNI.net A KNI wrapper for .NET
lib The static and dynamic libraries for Linux and Windows
py Python bindings for the KNI
src The KNI sources in C++

The files in the root directory have the following functions:

Name Description

AUTHORS.txt KNI software authors
changelog.txt Changes affecting versions
Doxyfile Descriptor for generating documentation
INSTALL.txt Installations-Anleitung
KatanaNativeInterface.* VisualStudio files (Windows)
LICENSE.txt Licence GNU GPL Version 2
Makefile Descriptor for compilations with make under Linux
readme.txt Brief information
WindowsInstaller.iss Descriptor for generating the Windows installer

Quickstart Guide 3

Build Dependencies and Required Tools

2.1.4 The KNI Software Architecture

Figure 2.1 illustrates the basic software architecture of the KNI and the various ways in which it can be
integrated into user-specific applications and frameworks.

Figure 2.1: The KNI software architecture

2.2 Build Dependencies and Required Tools

2.2.1 Linux und Mac

To compile the KNI, you need the GNU C and C++ Compiler with the standard libraries and the GNU ‘make’
tool.

2.2.2 Windows

The MS Visual C++ Compiler is used to compile the KNI library and C++ programs which use the KNI.
Information about Microsoft VisualStudio is available at

http://www.microsoft.com/

Quickstart Guide 4

The Katana Configuration Files

2.3 The Katana Configuration Files

The configuration files are located in the ’configfiles400’ folder for the Katana400 and in the ‘configfiles450’
folder for the Katana450. There is a separate file named accordingly for each robot model.

The configuration values in the files are correct and reliable
and should only be changed if you know exactly what you
are doing. Making erroneous changes to the configuration
can lead to the robot sustaining damage during operation!

Quickstart Guide 5

3 Programming in C++

The following sections of code shows the use of the KNI for the following purposes: connect, initialise and
move.

3.1 Connection

Listing 3.1 shows a section of code for establishing a connection with the Katana. First the network socket is
opened, the protocol is instantiated and initialised with the socket.

Listing 3.1: Connection

int port = 5566;

char* ip = "192.168.168.232";

std::auto_ptr<CCdlSocket> device;

std::auto_ptr<CCplSerialCRC> protocol;

try {

// set device

device.reset(new CCdlSocket(ip, port));

// set protocol

protocol.reset(new CCplSerialCRC());

// initialize protocol

protocol->init(device.get()); //fails if no response from Katana

} catch(Exception &e) {

// handle exception

}

3.2 Initialisation

Listing 3.2 shows a section of code for initialising the Katana. Once the CLMBase class, which implements the
Katana with linear movement, has been instanced, it is initialised with the configuration files and the protocol
instance.

Listing 3.2: Initialisation

char* configfile = "configfiles450/katana6M90T.cfg";

std::auto_ptr<CLMBase> katana;

try {

// create and initialize katana object

katana.reset(new CLMBase());

katana->create(configfile, protocol.get());

} catch(Exception &e) {

// handle exception

}

Quickstart Guide 6

Movements

3.3 Movements

Listing 3.3 shows examples of point-to-point and linear movements. The Katana always has to be calibrated
first. Then the actual pose (in other words, the position and orientation of the robot in space) is read out and
a second pose is then constructed. The first movement with ‘moveRobotTo()’ moves from the current pose to
the constructed pose without any specific importance being attached to the path. The second movement with
‘moveRobotLinearTo()’ takes a linear path back to the original pose.

Listing 3.3: Movements

// calibrate katana!

katana->calibrate();

// get actual position

double x1, y1, z1, phi1, theta1, psi1;

katana->getCoordinates(x1, y1, z1, phi1, theta1, psi1);

// create second position

double x2 = x1 + 100.0;

double y2 = y1 - 50.0;

double z2 = z1 + 80.0;

double phi2 = phi1;

double theta2 = theta1;

double psi2 = psi1;

// move to position 2

katana->moveRobotTo(x2, y2, z2, phi2, theta2, psi2);

// move linear back to position 1

katana->moveRobotLinearTo(x1, y1, z1, phi1, theta1, psi1);

3.4 Demo Programs

The KNI sources also include some demo programs demonstrating the use of the KNI library. These can be
found in the demo directory and are included in the compilation automatically when ‘make’ is called in the root
directory. The various example (demo) programs are described briefly in the following sections.

3.4.1 Control

This example is the one recommended by Neuronics for users who are programming with the KNI for the first
time. Following start-up with the command below, various inputs can be used to enable direct communication
with the Katana, poll data and teach-in programs.

Listing 3.4: The control example program

./control ../../configfiles450/(katanatype) IP-address

success: katana initialized

?: Display this help

c: Calibrate the Katana

e: Read the current encoder values

o: Switch motors off/on (Default: On)

r: Switch angle format: Radian/Degree (Default: Rad)

x: Read the current position

v: Set the velocity limits for all motors seperately

V: Set the velocity limits for all motors (or for the TCP if in linear movement mode)

a: Set the acceleration limits for all motors seperately

A: Set the acceleration limits for all motors

w: Read the velocity limits of all motors

W: Read the acceleration limits of all motors

q: Read the Sensors

Quickstart Guide 7

Demo Programs

y: Set a new position using IK

l: Switch on/off linear movements

<: Add a point to the point list

>: Move to a specific point

: (space) Move to the next point in the point list

=: write pointlist to file

f: read pointlist from file

g: Open Gripper

h: Close Gripper

n: Set the speed collision limit for all motors seperately

N: Set the speed collision limit for all motors

s: Set the position collision limit for all motors seperately

S: Set the position collision limit for all motors

t: Switch collision limit on

T: Switch collision limit off

u: Unblock motors after crash

d: Move motor to degrees

z: Set TCP offset

1: Move motor1 left

2: Move motor1 right

3: Move motor2 left

4: Move motor2 right

5: Move motor3 left

6: Move motor3 right

7: Move motor4 left

8: Move motor4 right

9: Move motor5 left

0: Move motor5 right

/: Move motor6 left

*: Move motor6 right

.: Toggle Step mode

+: Increase step size

-: Decrease step size

$: Start/Stop Program

p: Start/Stop movement through points list

3.4.2 Commands

This example demonstrates communication with the Katana based on the individual commands from the
Katana firmware protocol. Following start-up with

Listing 3.5: Commands example program
./commands ../../configfiles450/(katanatype) IP-address

the input options listed can be used to configure and send the individual commands.

3.4.3 Csharp

This short example demonstrates the integration of the KNI .NET wrapper with csharp for Microsoft Visual
Studio.

3.4.4 kni wrapper

This example demonstrates the use of the kni wrapper library, which permits calls from non-object-oriented
programming languages (C) and development environments (LabView, Matlab).

Quickstart Guide 8

4 Kinematics

In the Katana configuration file, two different kinematics can be selected under [KATANA] [GENERAL] kine-
matics. The first is an integrated analytical kinematics model and the second is an external numerical kine-
matics model which is also used in the Katana4D control software.

4.1 Integrated Kinematics Library

Make the configuration setting ‘kinematics = Analytical’ to use the integrated analytical kinematics model.
Although this implementation calculates the inverse kinematics very quickly, it has problems conceptually
affecting numerical calculation, meaning that under certain circumstances solutions might not be correct.

4.2 Roboop Kinematics Library

Make the configuration setting ‘kinematics = RobAnaGuess’ to use the external numerical kinematics model.
Although calculations take longer, this option is much more reliable. The weak point of the numerical method
(namely that in order to calculate the inverse kinematics a ‘good’ starting value needs to be specified approx-
imating the solution) is mitigated by means of combination with the less stable analytical implementation and
a few tricks. This combined approach enables results to be achieved which are far better than is the case with
the purely analytical model.

Quickstart Guide 9

5 Integration in Other Languages and
Frameworks

5.1 .NET

The KNI.net directory contains a .NET wrapper which permits the KNI to be integrated under .NET. This
wrapper can be compiled with the ‘cli’ .NET compiler option. An example Visual Studio project file shows the
necessary compiler settings.

5.2 C-based Interfaces

The kni wrapper KNI library contains a non-object-oriented interface to the KNI which permits calls from
‘C’-based environments. This provides a means of integrating the KNI into measuring and control envi-
ronments such as LabView or Matlab. An example program demonstrating this wrapper is available under
demo/kni wrapper.

5.3 Python

The kni wrapper and a Python wrapper generated automatically with SWIG enable the KNI to be used in the
Python script language. The corresponding sources and files are located in the py directory. Calling ‘make’
in this directory will generate the KNI.py and KNI.so files accordingly. These files contain the entire set of
KNI libraries and as such can be imported and used directly in a Python shell or a Python script. This also
provides a means of achieving script-based KNI integration.

In general terms, the interface is the same as in the case of the kni wrapper. Only a small number of functions
differ with regard to the signature (on account of conceptual differences between C and Python). More detailed
information about this appears in the readme.txt file which you will find in the py directory.

Listing 5.1 shows KNI being used from a Python shell.

Listing 5.1: Using the KNI from Python

>>> import KNI

>>> KNI.initKatana("../configfiles450/katana6M90T.cfg", "192.168.1.1")

1

>>> KNI.calibrate(0)

Katana4xx calibration started

...done with calibration.

1

>>> KNI.getEncoder(1)

30500

>>> KNI.moveMot(1, 20000, 50, 2)

1

>>> from KNI import TMovement

>>> home = TMovement()

>>> KNI.getPosition(home.pos)

1

>>> home.transition = KNI.PTP

Quickstart Guide 10

Python

>>> home.velocity = 50

>>> home.acceleration = 2

>>> KNI.allMotorsOff()

1

>>> """move robot by hand to an other position"""

’move robot by hand to an other position’

>>> KNI.allMotorsOn()

1

>>> KNI.executeMovement(home)

1

>>> KNI.allMotorsOff()

1

>>>

5.3.1 LabView

The kni wrapper can be used to integrate the KNI into Labview. You will find the kni labview.vi example
program for integrating the KNI into LabView in the demo/kni labview directory.

5.3.2 Matlab

The kni wrapper can be used to integrate the KNI into Matlab. You will find the kni matlab.m example
program for integrating the KNI into Matlab in the demo/kni matlab directory.

Quickstart Guide 11

	Overview
	Build Environment
	KNI Sources
	Reference Sources
	Installation
	Linux
	Windows

	Description of the Source Tree
	The KNI Software Architecture

	Build Dependencies and Required Tools
	Linux und Mac
	Windows

	The Katana Configuration Files

	Programming in C++
	Connection
	Initialisation
	Movements
	Demo Programs
	Control
	Commands
	Csharp
	kni_wrapper

	Kinematics
	Integrated Kinematics Library
	Roboop Kinematics Library

	Integration in Other Languages and Frameworks
	.NET
	C-based Interfaces
	Python
	LabView
	Matlab

