
The C(anonical) Scan Matcher

1. Introduction . 1
2. Content of this package . 1
2.1. Stable things: C scan matching library . 2
2.2. Stable things: applications. .2
2.3. Unstable things: scripts . 3
2.4. Unstable things: Ruby and Matlab implementations . 3
3. Installation. .4
3.1. Required software dependencies. .4
3.2. Compiling . 4
3.3. Getting started . 5
3.4. Installing Ruby libraries and wrapper (optional) . 5
4. The laser_data data structure . 6
5. Input and output formats . 7
5.1. The JSON log format. .7
5.2. The Carmen log format. .8
5.2.1. Regarding the timestamp . 8
6. Examples . 8
6.1. Simple scan matching . 8
6.2. Creating a PDF . 8
6.3. Examining one particular matching (video) . 9
6.4. Help! ICP doesn’t work . 9
7. Embedding CSM in your programs . 9
7.1. Linking to CSM . 9
7.2. Accessing CSM functions from your applications . 10
7.3. Orienting oneself in the source code . 10

1. Introduction

I created this package:

• To have a well-documented reference implementation of PL-ICP. If you are only in-
terested in the core algorithm of PL-ICP, a separate concise implementation in C/-
Matlab/Ruby is available.

• To have a trustworthy scan matcher to be used in the experiments for some papers
on ICP covariance, the Cramer-Rao bound for range finders, and robot calibration.
For batch experiments, it’s also useful that it’s pretty fast.

• To have a collection of utilies for command line (UNIX-style) manipulation of laser
data, and creating beautiful maps and animations.

2. Content of this package

The core content is the C scan matching library which is quite polished, but this package
contains a lot of software, only some of that in an usable state. In general, I am not ashamed
of the prototypical code I write.

1

http://purl.org/censi/2007/plicp
http://purl.org/censi/2007/plicp
http://purl.org/censi/2007/plicp
http://purl.org/censi/2006/icpcov
http://purl.org/censi/2006/accuracy
http://purl.org/censi/2007/calib

2.1. Stable things: C scan matching library

The directory sm/csm contains a scan matcher written in C, plus associated tools and apps.
This is stable and reasonably bug-free.

There are many libraries in the sm/lib directory:

• Directory egsl : a light wrapper for GSL that makes manipulating matrices easy and

efficient. This is documented in another file: see sm/lib/egsl/docs .

• Directory options : for processing command-line arguments and configuration files.

• Directory json-c : a library for JSON input/output. This is a slightly modified

version of the original json-c library released under the MIT license.

2.2. Stable things: applications

There are many applications in the sm/apps directory:

• Application sm2 : standard scan-matching. Reads a log, runs ICP, and writes the
scan-matched output. Input can be both Carmen and JSON.

• Application sm3 : like sm2, but instead of actual output it measures the perfor-
mance. This is the application that produced the stats found in the paper submitted
to ICRA’08.

• Application sm1 : useful for running experiments. Reads scans from two different
files, and outputs statistics.

Visualization apps:

• Application log2pdf : converts a laser log to a PDF map. To build this application,
it is needed to install the Cairo graphics library.

• Application sm_animate : creates an animation for the ICP process, displaying the
correspondences, etc. This application reads the output created by sm2 with the
-file_jj option. To build this application, it is needed to install the Cairo graphics

library.

Miscellaneous Unix-style processing for laser data:

• Application carmen2json : converts a Carmen log to the JSON format.

• Application ld_fisher : computes the Fisher’s information matrix. See http://purl.org/censi/2006/accuracy
for details.

• Application json_extract : extract the n-th object from a JSON stream.

• Application ld_slip : adds some noise to the odometry field.

• Application ld_smooth : smooths the readings data.

• Application ld_noise : adds sensor noise.

2

http://www.json.org
http://en.wikipedia.org/wiki/MIT_License
http://cairographics.org
http://cairographics.org
http://purl.org/censi/2006/accuracy

• Application ld_cluster_curv : clusterize the rays based on the analysis of the cur-
vature.

• Application ld_linearize : fits a line to each cluster (data must have been previously
clustered, for example by ld_cluster_curv).

GUI apps:

• apps/gtk_viewer contains the prototype of a viewer using GTK. It does not work
yet.

2.3. Unstable things: scripts

In the scripts/ directory you can find:

• Script json2matlab.rb : converts a JSON object in a Matlab scripts. This is the
holy grail of data exchange.

Warning: at the moment, this script relies on some patches to the Ruby JSON library.
Without them, it is limited to only 1 JSON object in each file.

• Script fig2pics.rb : used for converting FIG files to PDF. It has many more options

than fig2dev (that is being used internally), including the ability to use a LATEX
preamble and to change the resulting bounding box.

• Script create_video.rb : displays the scan-matching process. This reads the journal
files written by applications sm1 and sm2 . Made obsolete by sm_animate

2.4. Unstable things: Ruby and Matlab implementations

Unstable things include:

• Directory sm_ruby_wrapper/ : a ruby wrapper for the sm C library. This wrapper
is used for running some of the experiments. It is not documented and it needs tidying
a little.

• Directory rsm/ : a Ruby implementation of the same algorithms used in the sm
library. Some times ago, the C and Matlab implementation were perfectly in sync.
Now they differ a little. However, in the future I will try to get them back in sync,
as the only way of having a good chance of making a bug-free implementation, is to
make it twice.

• Directory matlab/ and matlab_new/ . The Matlab scripts are a mess that needs
tidying. There’s a lot in there. They are kept here because they are used for creating
some of the figures in the submitted papers. Also, the first PLICP implementation
was written in Matlab and is buried there, somewhere.

Also, I occasionally tried to make sure that the scripts run fine in Octave. They do,
except for the plotting.

3

http://www.xfig.org
http://www.octave.org

3. Installation

3.1. Required software dependencies

This software has been tested on Mac OS X, Linux, and Windows XP (using Cygwin). It
compiles with GCC (3.3 or 4.x) and the Intel C++ Compiler (ICC).

Required software:

• The build system is based on cmake , which is available at http://www.cmake.org/.

• The GSL, Gnu Scientific Library, available at http://www.gnu.org/software/gsl/.

• (optional) For log2pdf and other visualization applications, you will need the Cairo
graphics library, available at http://cairographics.org. The recommended version is
the stable 1.4.12.

Linux. CMake, Cairo, and GSL are probably already packaged for your Linux distribution.
For example, in Ubuntu, you can simply enter this command to install all dependencies:

$ sudo apt -get install build -essential cmake libgsl0 -dev libcairo2 -dev

OS X. You can install GSL using Fink. You have to install Cairo manually.

Windows XP, using Cygwin. CSM runs fine on Cygwin, but very slow compared
to Linux/OS X. Make sure you install the Cygwin packages cairo , gsl , gsl-apps ,

gsl-devel .

Windows XP, using Visual Studio. CSM doesn’t compile yet on this platform. CMake
can theoretically create Visual Studio projects, but I could not manage to do it. Also, some
CMake code is probably Unix-specific.

3.2. Compiling

If you are lucky, this should be it:

$ cmake .

$ make

If you want to install this library system-wide, you could use:

$ cmake -DCMAKE_INSTALL_PREFIX:PATH=/usr/local .

$ make

$ make install

as the first step.

For installing the Ruby wrapper, refer to the separate instructions. If you want to use the
Ruby wrapper, I suggest to install the source code in a deploy sub-directory of csm :

csm/

docs/

csm/

rsm/

deploy/ <--- here

To do this, use:

4

http://www.cmake.org/
http://www.gnu.org/software/gsl/
http://cairographics.org
http://finkproject.org/

$ cmake -DCMAKE_INSTALL_PREFIX:PATH=‘pwd ‘/ deploy .

$ make

$ make install

(you have to give a complete path to -DCMAKE_INSTALL_PREFIX:PATH).

Later, remember to set your PATH variable to csm/deploy/bin .

3.3. Getting started

You might get started by doing this:

$ sm2 < in.log > out.log

where in.log is a Carmen-format log file.

You can find one in the top-level experiments directory: it is called laserazosSM3.log .
So, if you installed the Cairo library, you can see the result with:

$ sm2 < in.log > out.log

$ log2pdf -use odometry -in out.log -out out -odometry.pdf

$ log2pdf -use estimate -in out.log -out out -estimate.pdf

3.4. Installing Ruby libraries and wrapper (optional)

This step-by-step guide is written by me, for me.

Installing with cmake:

$ cmake . -DCMAKE_INSTALL_PREFIX:PATH=/usr/local

First, set up some directories

$ export SMLIB=

$ cd $SMLIB

$ ls

...................

Create installation directory:

$ mkdir deploy

$ mkdir deploy/bin

$ export PATH=$PATH $SMLIB/deploy/bin

Create a new ruby installation

$ mkdir my_ruby

$ cd my_ruby

Download ruby:

$ wget ftp://ftp.ruby -lang.org/pub/ruby/ruby -1.8.5. tar.gz

$ tar xvzf ruby -1.8.5. tar.gz

$./ configure --prefix=$SMLIB/deploy

$ make

$ make install

5

Now you should be able to use the new ruby installation

$ which ruby

<SMLIB >/ deploy/bin/ruby

$ ruby --version

ruby 1.8.5 (2006 -08 -25)

Instructions for installing rb-gsl:

1. Get and install GSL. Make sure the command “gsl-config” is in command search path.

2. Download Ruby/GSL, ungzip and untar the archive rb-gsl-xxx.tar.gz.

3. Use: % cd rb-gsl-xxx/ % ruby setup.rb config % ruby setup.rb setup % ruby setup.rb
install (as root)

Download rubygems:

$ cd $SMLIB/my_ruby

$ wget http :// rubyforge.org/frs/download.php /11289/ rubygems -0.9.0. tgz

$ tar xvzf rubygems -0.9.0. tgz

$ cd rubygems -0.9.0

$ ruby setup.rb

Now you should have the “gem” command installed:

$ which gem

<SMLIB >/ deploy/bin/gem

4. The laser_data data structure

Laser data is passed around in a structure which is quite rich and in some ways redundant
to achieve ease of use.

In C, the structure’s name is struct laser_data . In Ruby, it is class LaserData . In
Matlab, it’s a generic structure.

A description of the fields follows (assume the structure is called ld).

Regarding the pose of the robot:

ld.true_pose Pose of the robot (m,m,rad), in world coordinates.

ld.odometry Odometry (true_pose corrupted by noise).

ld.estimate Estimate of true_pose .

Regarding the rays:

ld.nrays Number of rays.

ld.min_theta and ld.max_theta Minimum and maximum theta (radians).

ld.theta[i] Direction of i-th ray with respect to the robot (radians).

ld.readings[i] Sensor reading (meters). If the reading is not valid, then ld.readings(i) == NAN .

6

ld.valid[i] In C, it assumes values 0 and 1 . In Ruby, it assumes values true or
false . (TODO: choose how to serialize).

This field is true if this ray is valid, and, in particular, ld.readings[i] is valid.
Invalid rays occur when the obstacle is farther than the sensor horizon.

ld.true_alpha[i] Orientation of the normal of the surface (radians, relative to robot).

It is NAN if not valid.

ld.alpha[i] Estimated orientation of the surface (radians, relative to robot). It is an

estimate of ld.true_alpha[i] .

ld.alpha_valid[i] True if previous field is valid.

ld.cov_alpha[i] Estimated covariance of ld.alpha[i] .

Additional fields used during the computation:

ld.cluster[i] Cluster to which point i belongs. This is used for computing the orienta-
tion (at the moment a really dumb algorithm is used for clustering). If cluster[i] == -1 ,
the point does not belong to any cluster.

ld.points[i].p Point coordinates (cartesian). Computed from the polar coordinates

theta[i] and readings[i] .

ld.points_w[i].p Point coordinates (cartesian) in a “world” reference frame. Computed

with the function ld_compute_world_coords(LDP, double pose[3]) .

ld.hostname This is parsed from the Carmen data field.

ld.tv This is a struct timeval field giving a timestamp for the laser scan. Please see
the section on parsing to learn how this is parsed from the Carmen log.

5. Input and output formats

The library understands two formats: a rich JSON format, and the old good Carmen format.

5.1. The JSON log format

See this site: http://www.json.org for general information about JSON.

This is a sample laser data structure. It has only 5 rays (which all happen to be invalid),
and it has no alpha , true_alpha , cluster fields:

{

"nrays": 5,

"min_theta ": null ,

"max_theta ": null ,

"theta": [null , null , null , null , null],

"readings ": [null , null , null , null , null],

"valid": [0, 0, 0, 0, 0],

"odometry ": [null , null , null],

"estimate ": [null , null , null],

"true_pose ": [null , null , null]

}

7

http://www.json.org

Note that NAN is represented with null in the JSON format.

5.2. The Carmen log format

The 6 pose values in the log are interpreted as follows:

estimate.x estimate.y estimate.theta

odometry.x odometry.y odometry.theta

5.2.1. Regarding the timestamp Regarding the timestamp “fields”. The last three
fields in a Carmen log can be:

integer string integer

This is interpreted as seconds, hostname, microseconds. This is good if you want to write
a timeval struct to the log and be sure it won’t be modified by precision problems when
writing, and parsing, as a double .

If it doesn’t look like a timestamp, then it is assumed that the fields are:

double string double

In this case, the first double is interpreted as the timestamp in seconds, while the second
double is discarded.

The library will warn the user about these decisions by writing on the console this message:

sm2:inf: Reading timestamp as ’sec hostname usec ’.

or this one:

sm2:inf: Reading timestamp as doubles (discarding second one).

6. Examples

6.1. Simple scan matching

Simple scan-matching:

$ sm2 < in.log > out.log

where in.log may be in either Carmen or JSON format.

6.2. Creating a PDF

Creating a PDF:

$ log2pdf -use odometry -in in.log -out out_odometry.pdf

$ log2pdf -use estimate -in in.log -out out_estimate.pdf

8

6.3. Examining one particular matching (video)

To zoom on one particular matching, write a “journal” using the -file_jj option of sm2 :

$ sm2 -file_jj journal.txt < in.log > out.log

Extract what you are interested in from the journal. In this example, the 13th matching:

$ json_extract -nth 13 < journal.txt > matching13.txt

Create the animation:

$ sm_animate -in matching13.txt

6.4. Help! ICP doesn’t work

Actually, there are a million reasons for which it shouldn’t work. If it gives strange results,
try the following:

1. Plot the data! Plot the input and plot the output using log2pdf .

2. Plot the animation! Use the procedure above and inspect the resulting videos.

3. Double-check the parameters you are using. Note that there are some like max_correspondence_dist

which depend on the scale of your data. A value of 2m might work for a big robot
making large movements, but not for a little Khepera.

4. Smooth your data – if your sensor is very noisy, like an Hokuyo, it’s worth to do simple
low-pass filtering. Especially for PLICP which uses the orientation information.

7. Embedding CSM in your programs

7.1. Linking to CSM

When CSM is installed, a pkgconfig csm.pc file is installed as well. This makes it easy to
link to CSM.

For example, on my system, after installing CSM, I can run pkgconfig to get the C
preprocessors and linker flags.

This is what I get on my system (on yours, paths will be different, of course).

$ pkg -config --cflags csm

-I/sw/include -I/Users/andrea/svn/cds/csm/deploy/include/cairo

-I/Users/andrea/svn/cds/csm/deploy/include

$ pkg -config --libs csm

-L/sw/lib -L/Users/andrea/svn/cds/csm/deploy/lib

-lcsm -static -lgsl -lgslcblas -lm

If you use GNU Make, a basic Makefile for your program linking to CSM would be something
like:

CSM_FLAGS=‘pkg -config --libs --cflags csm ‘

myprogram: myprogram.c

gcc $(CSM_FLAGS) -o myprogram myprogram.c

9

http://pkg-config.freedesktop.org/wiki/

You can download the sources for this example in the repository (directory docs/example-linking-make).

If you use CMake — and you should! — it is reccomended that you use something like the
following in your CMakeLists.txt .

cmake_minimum_required(VERSION 2.4)

project(myproject)

Require we have pkgconfig installed

find_package(PkgConfig REQUIRED)

Tell pkgconfig to look for CSM

pkg_check_modules(CSM REQUIRED csm)

IF(${CSM_FOUND })

MESSAGE (" CSM_LIBRARY_DIRS: ${CSM_LIBRARY_DIRS }")

MESSAGE (" CSM_LIBRARIES: ${CSM_LIBRARIES }")

MESSAGE (" CSM_INCLUDE_DIRS: ${CSM_INCLUDE_DIRS }")

INCLUDE_DIRECTORIES(${CSM_INCLUDE_DIRS }) # important!

LINK_DIRECTORIES(${CSM_LIBRARY_DIRS }) # important!

ELSE(${CSM_FOUND })

MESSAGE(FATAL_ERROR "CSM not found. Check that the environment \

variable PKG_CONFIG_PATH includes the path containing the file ’csm.pc ’.")

ENDIF(${CSM_FOUND })

add_executable(myprogram myprogram.c)

target_link_libraries(myprogram ${CSM_LIBRARIES }) # important!

You can download the sources for this example in the repository (directory docs/example-linking-cmake).

7.2. Accessing CSM functions from your applications

All functions that you would be interested in using are accessible by including one header:

#include <csm/csm_all.h>

If you are linking from C++, as opposed to C, all functions are enclosed in the CSM
namespace. Therefore, you need something like the following.

#include <csm/csm_all.h>

using namespace CSM;

7.3. Orienting oneself in the source code

The main function to call is the following:

void sm_icp(struct sm_params*params , struct sm_result*result);

This implements matching between two laser scans. All the applications discussed above
(sm1 , sm2 , etc.) are essentially wrapper of sm_icp : they fill in the params structure,

and read from the result structure.

The sm_params structure is described in the <csm/algos.h> header file. It contains pa-
rameters for both ICP and other algorithms (like HSM; however, only (PL)ICP is considered
stable in CSM)

Note that many of the parameters greatly influence the behavior of PLICP, so it is worth
reading them all. If you run sm2 -help you will see the default values, which are reasonable
as a starting point.

10

http://www.cmake.org/

We now briefly discuss the main parameters.

• params->laser_ref : pointer of a structure of type laser_data (described before
in this document) representing the “ref”erence scan (first scan).

• params->laser_sens : pointer of a structure of type laser_data representing the
second scan.

• params->first_guess : first guess (x,y,theta).

• use_point_to_line_distance : 1 for PLICP, 0 for ICP.

• use_corr_tricks : use the tricks described in the PLICP paper.

Parameters that influence stopping and restarting:

• max_iterations : maximum number of iterations

• epsilon_xy , epsilon_theta : stop if change below these thresholds

• restart* : whether to add some noise and restart if the match is not satisfactory.
Useful for getting out of local minima but expensive.

Parameters that influence correspondence establishment:

• max_angular_correction_deg , max_linear_correction .

• max_correspondence_dist

Parameters that influence correspondence pruning:

• outliers_maxPerc

• outliers_adaptive_*

• outliers_remove_doubles

See the file <csm/algos.h> for a description of the above parameters, and the other minor
parameters.

11

